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1. Introduction

Inflation [1] has emerged as the standard paradigm describing physics of the very early

universe. Besides addressing several fine-tuning issues in big bang cosmology such as the

flatness and horizon problems, it provides a framework to explain the origin of structure and

the cosmic microwave background (CMB) anisotropy [2]. While there is a plethora of effec-

tive field theory based models of inflation [3], many outstanding questions in inflationary

cosmology require a fundamental microscopic description. Conversely, recent observations

of the CMB and large scale structure [4] lead us to increasingly precise measurements of

the inflationary parameters. These measurements provide us with an exciting window to

probe physics at ultra-high energies [5], far higher than what current and upcoming ter-

restrial accelerators can reach. Thus inflationary cosmology has become the perfect arena

for fundamental theory to meet experiment.

String theory is currently our leading candidate for a quantum theory of gravity. Thus

it is worthwhile to explore explicit realizations of inflation within this framework. In this

paper, we will focus on one of the most well developed inflationary scenarios in string theory,

i.e. D brane inflation [6] (see also refs. [7, 8]; for reviews, see ref. [9] and references therein),

where the inflaton field is identified with the position of a space-filling mobile D brane,

usually a D3 brane, in a warped six dimensional manifold [10]. In the original scenario of

refs. [6 – 10], an additional D3 was introduced to drive inflation. The D3 brane is localized

by the RR fluxes at the tip of a warped throat, thus inflation proceeds as the mobile D3

is attracted by a weak D3-D3 Coulombic force to move slowly along the warped direction.

However, it was also noted in ref. [10] that because the volume modulus of the compacti-

fication couples non-trivially to the canonical inflaton, its stabilized value gives additional

Hubble scale correction to the inflaton mass, causing the well known η problem [11].

An important step towards addressing the η problem explicitly in this concrete set-

ting was recently made in refs. [12, 13] (see also refs. [14 – 17]). The key ingredient in the

construction was the one loop threshold correction to the non-perturbative superpotential

obtained in ref. [18] (see also refs. [19, 20]). In ref. [21] and other stabilized compactifi-

cations, non-perturbative effects are often introduced to stabilize moduli. In the context

of ref. [21], such effects come from instantons on a stack of D7 branes (or Euclidean D3

branes). Interestingly, the non-perturbative moduli stabilizing force also turns out to give

the dominant contribution to the inflaton potential.1 This contribution arises because the

mobile D3 brane backreacts on the moduli stabilizing D7 branes. The correction depends

on the holomorphic four cycles within the conifold on which the D7 branes wrap. The

embedding of the D7 branes breaks the isometry of the deformed conifold, and thus the

inflationary trajectory depends sensitively on the choice of the embedding function defining

the loci of the D7 branes. As a result, explicit slow-roll models have been constructed by

a “delicate” tuning of the microscopic compactification parameters.

While the broken angular isometry directions are stabilized by the coordinate depen-

dent non-perturbative superpotential, for a given D7 brane embedding, there are typically

1Although the Coulombic force is subdominant in comparison to the moduli stabilizing force, a D3 brane

was still introduced to end inflation.
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residual isometries preserved by the resultant scalar potential. The potential for the fields

associated with these isometries remain flat during the inflationary epoch and so they can

take arbitrary values without affecting the inflationary trajectory. Being almost massless,

their quantum fluctuations give rise to a nearly scale invariant isocurvature perturbation

spectrum. As argued by Lyth and collaborators in refs. [22, 23], these isocurvature per-

turbations can be converted to the curvature perturbations at the end of inflation. In the

context ofD brane inflation, inflation ends when the open string tachyon condenses between

the mobile D3 and D3. The critical value of the canonical inflaton at which inflation ends

φend depends on the residual symmetries as they enter into the tachyon potential. Since

φend picks up spatial dependence through the quantum fluctuations of the light residual

symmetries, inflation can end on a spatial slice of non-uniform energy density. As we will

see, this is the case for instance when the inflaton potential is dominated by the moduli sta-

bilizing force towards the end of inflation. Thus, one could in principle expect potentially

significant contribution to the power spectrum and non-Gaussianities at the end of inflation.

In this paper, we study these multi-field effects at the end of brane inflation, and

outline the necessary conditions for them to be significant. We then perform a case study

for the setup considered in ref. [13], by explicitly calculating the canonical inflaton potential

near the tip of the deformed conifold, and demonstrate that inflation can persist in this

region provided that the D3-D3 Coulombic attraction becomes subdominant. We also

discuss various mechanisms to uplift the vacuum energy which results in a subdominant

Coulombic potential all the way to the tip of a warped throat. We also show that the

angular stable inflationary trajectory for the specific D7 brane embedding [24] used in

ref. [13] can be extended to the entire deformed conifold. However, along the specific

trajectory considered in ref. [13], we will see explicitly that the corresponding residual

angular isometries have vanishing proper separations at the tip. Thus, for this specific D7

embedding, no significant contribution to the curvature perturbation is generated at the

end of inflation. This implies that while multi-field effects can in principle be significant in

brane inflation, they can only happen with other D7 embeddings, or with more than one

stacks of D7 branes present.

This paper is organized as follows. In section 2, we review the basic setup of flux

compactification and brane inflation, in order to set up our notation. Readers who are

familiar with the above topics can skip this section. In section 3, we recast the mechanism

proposed in ref. [22] in the context of brane inflation in a warped throat, and outline the

necessary conditions for it to take place. In section 4, we discuss various possible uplifting

mechanisms in a warp throat and propose a natural scenario for an uplifted potential to

realize the effect of ref. [22]. In section 5, we explicitly calculate the canonical inflaton

potential near the tip of the deformed conifold and the resulting slow-roll parameters. The

degeneracy of the residual isometries will also be shown. We end with some discussions in

section 6. We relegate most of the calculational details in a number of appendices.

2. D3 brane in warped compactifications

We will consider warped compactification of type IIB string theory in four dimensions [25]
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(see also earlier works on warped IIB vacua [26 – 28]), with the following metric ansatz

ds2 = e2A(y)e−6u(x)gµνdx
µdxν + e−2A(y)e2u(x)g̃mndy

mdyn , (2.1)

where eA(y) is the warp factor sourced by branes and fluxes, and eu(x) is the Weyl rescaling

factor required to decouple the overall volume modulus from the four dimensional graviton,

which can be taken as O(1). The internal metric g̃mn is taken to be that of a compact six

dimensional Calabi-Yau space. In addition to the ansatz (2.1), we choose the bulk RR and

NS-NS fluxes of type IIB supergravity to respect four dimensional Lorentz invariance (and

self-duality in the case of the five form flux),

G3 ≡ F3 − τH3 =
1

6
Gmnp dy

m ∧ dyn ∧ dyp , (2.2)

F̃5 = (1 + ∗)dα(y) ∧
√

|g4|dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.3)

where we combined the NS-NS and RR three forms H3 and F3 with the complex axio-

dilaton τ ≡ C0 + ie−φ into the complex combination G3.

We are interested in the background BPS solutions of the equations of motion which

impose the following relations on the fluxes [25],

α(y) = e4A(y) , (2.4)

∗6G3 = iG3 , (2.5)

such that the complexified three form flux is imaginary self-dual.

2.1 Four dimensional effective theory

At energy scales much lower than the Kaluza-Klein mass scale, the effective theory for

this warped background is described by four dimensional N = 1 supergravity. The scalar

fields of our theory consist of closed string moduli, including the complex structure moduli,

axio-dilaton and Kähler moduli, as well as open string moduli, such as the positions of D3

branes and D7 branes. The flux-induced superpotential [29]

WGVW =

∫
G3 ∧ Ω (2.6)

stabilizes the complex structure moduli and axio-dilaton as described in ref. [25], where Ω

is the holomorphic (3, 0) form of the unwarped Calabi-Yau space. Lifting (2.6) to F-theory,

we see that bulk and D7 worldvolume fluxes can also stabilize the positions of D7 branes

as well. We will assume for the rest of the paper that these moduli are stabilized by (2.6)

and its F-theory lift, and we will work at energies below the scale of this stabilization. The

stabilized complex moduli give rise to a constant contribution to the superpotential,

W0 ≡
(∫

G3 ∧ Ω

)

0

. (2.7)

The remaining closed and open string moduli consist of the Kähler moduli, associated

with the sizes of holomorphic four cycles, and the positions of D3 branes in the internal
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space. For simplicity we will consider a single Kähler modulus ρ = σ + iς, and denote

the location of the D3 brane in the compact space by three complex coordinates zα with

α = 1, 2, 3. In the presence of a D3 brane, the Kähler potential for the D3 brane fields and

the Kähler modulus is [30]

κ2K(ρ, zα, z̄α) = −3 log [ρ+ ρ̄− γk (zα, z̄α)] ≡ −3 logU(r, σ) , (2.8)

where

γ =
σ0T3

3M2
P

, (2.9)

κ2 =M−2
Pl = 8πG , (2.10)

k(zα, z̄α) is the geometric Kähler potential for the metric on the Calabi-Yau, and σ0 is

the stabilized value of σ when the D3 brane is at its stabilized configuration: see ref. [31]

for more details. It is important to note that there are many subtle issues involved in the

derivation of the low energy effective action for warped compactifications. These issues dis-

cussed in, e.g. refs. [32 – 34] raise some concerns about the validity of the above conjectured

warped Kahler potential [30] in the strong warping limit, though some recent progress has

been made towards this end [35, 36].

In type IIB compactifications the flux superpotential (2.6) does not depend on the

Kähler moduli, so we need other ingredients to stabilize these fields. One mechanism

for stabilizing the Kähler moduli is to include non-perturbative effects through gaugino

condensation on a stack of D7 branes or a Euclidean D3 brane instanton. Branes wrapping

a four cycle associated with a Kähler modulus ρ produce a non-perturbative contribution

to the superpotential which depends on ρ and the D3 brane position zα of the form

Wnp = A(zα)e−aρ , (2.11)

with a = 2π/n, where n > 1 for gaugino condensation on D7 branes and n = 1 for a

Euclidean D3 brane. The prefactor A(zα) is a holomorphic function and can be written

as [18 – 20]

A(zα) = A0

[
f(zα)

f(0)

]1/n

, (2.12)

where A0 depends on the stabilized complex structure moduli and has mass dimension 3.

The dependence on the position of D3 branes shows up through the embedding function

f(zα) = 0 of the four cycle in the Calabi-Yau space, where f(0) represents the value of the

embedding function when the D3 brane is stabilized.

The total superpotential

W = W0 +A0

[
f(zα)

f(0)

]1/n

e−aρ , (2.13)

and the Kähler potential (2.8) give rise to the F -term contribution to the scalar potential

which depends on the Kähler moduli and the D3 positions,

VF (σ, zα, z̄α) = eκ
2K
[
KΣΩDΣWDΩW − 3κ2|W |2

]
. (2.14)
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Substituting the general superpotential (2.13) as well as the explicit expression for the

inverse metric KΣΩ solved in ref. [15] into (2.14), the explicit form for VF (σ, zα) is given by

VF (σ, zα, z̄α) =
κ2

3[U(r, σ)]2

{[
U(r, σ) + γkγδ̄kγkδ̄

]
|W,ρ|2 − 3

(
WW,ρ +WW ,ρ̄

)}

+
κ2

3[U(r, σ)]2

[(
kαδ̄kδ̄W ,ρ̄W,α + kᾱδkδW,ρW ,ᾱ

)
+

1

γ
kαβ̄W,αW ,β̄

]
, (2.15)

where a subscript of a letter with a comma denotes a partial differentiation with respect to

the corresponding component. Clearly the scalar potential depends on the detailed form

of the little Kähler potential k(zα, z̄α) and its derivatives, as well as the holomorphic D7

brane embedding function f(zα).

2.2 Warped deformed conifold

The localized fluxes and sources can backreact on the geometry and generate a non-trivial

warp factor eA(y) [25]

∇̃2e4A = e2A |G3|2
12Imτ

+ 2e−6A(∂e4A)2 +
κ2

10

2
e2A (Tm

m − T µ
µ)local , (2.16)

where Tm
n is the stress energy tensor of ‘localized’ sources such as D3 and D7 branes.

When fluxes are turned on along the A and B cycles in the neighborhood of a conifold

point in the internal space,

1

2πα′

∫

A
F3 =2πM , (2.17)

1

2πα′

∫

B
H3 = − 2πK , (2.18)

they generate a strongly warped ‘throat’. The complex structure modulus ǫ2 =
∫
A Ω of the

conifold is stabilized at an exponentially small value [25]

ǫ2 =
√

2υ
3/4
0 (gsMα′)3/2a3

0 , (2.19)

with

υ0 ≈0.718050 , (2.20)

a0 = exp

(
− 2πK

3gsM

)
. (2.21)

The geometry is that of a warped deformed conifold, whose construction in supergravity

is known as the Klebanov-Strassler (KS) throat [37]. Notice that in our definition of the

deformation parameter ǫ2, the exponential warp factor a0 explicitly appears. The six

dimensional deformed conifold can be described by a deformation of the embedding of the

singular conifold in C
4 as

4∑

A=1

(zA)2 = ǫ2 , (2.22)
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where we will use the SO(4) rotational symmetry of the coordinates zα to make the defor-

mation parameter ǫ real.

The detailed metric of the warped deformed conifold is given in appendix A, so here

we just note that far from the ‘tip’ of the throat where the deformation is concentrated,

the metric is simply that of a singular conifold,

ds26 ≈ 3

2

(
dr2 + r2dΩ2

T 1,1

)
= dr̂2 + r̂2dΩ2

T 1,1 , (2.23)

where the space T 1,1 is a Einstein-Sasaki metric with the topology of S2×S3 and we define

r̂2 = 3r2/2 for notational simplicity. Near the tip of the throat, S2 shrinks to zero size

while S3 remains finite with its size given by the deformation parameter with the metric

ds26 ≈ ǫ4/3
(
dτ2 + τ2dΩ2 + dΩ3

)
. (2.24)

Here the parameter τ ∈ R is related to the radial coordinate r and the embedding coordi-

nates zα via

ǫ2 cosh τ =

4∑

A=1

|zA|2 = r3 . (2.25)

We hope our readers do not confuse τ here with the IIB axio-dilaton shown in (2.2).

Throughout the remaining text, τ denotes this coordinate. The expressions for the complex

embedding coordinates zA given in terms of real coordinates are listed in appendix A.

2.3 D3 brane dynamics

We are interested in the dynamics of mobile D3 branes in the background discussed above.

For slowly moving D3 branes, the kinetic term is derived from the pull-back of the bulk

deformed conifold metric

S3 = −1

2
T3

∫
d4x
√

|g4| e−4ugµν∂µY
α∂νY

β̄
g̃αβ̄ , (2.26)

where g̃αβ̄ = ∂α∂β̄k denotes the bulk deformed conifold metric. In general (2.26) is a

non-linear sigma model, so it is not always straightforward to canonically normalize all the

fields simultaneously into the form

Snorm =

∫
d4x
√

|g4|gµν∂µφ
α∂ν φ̄

β̄δαβ̄ . (2.27)

In particular, far from the tip of the throat where we can write the metric as (2.23), we

can write the kinetic term for a spatially homogenous D3 brane as

S3 =
3

2
T3

∫
d4x
√

|g4| e−4u
[
ṙ2 + r2dΩ̇T 1,1

]
, (2.28)

where a dot indicates a derivative with respect to the time coordinate t. For motion only

in the large radial direction, we can identify

φr(t) ≡
√

3

2
T3e

−2ur(t) =
√
T3 e

−2ur̂(t) (2.29)
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as the canonically normalized scalar field in the radial direction far from the tip. Similarly

using (2.24), near the tip of the throat the internal metric is of the form given by (2.24)

and the kinetic term becomes

SD3 = T3

∫
d4x
√
|g4| e−4uǫ4/3

(
τ̇2 + τ2dΩ̇2 + dΩ̇3

)
. (2.30)

Again, for the motion only in the small radial (τ) direction, we can identify

φτ (t) ≡
√
T3

2
ǫ2/3e−2u τ(t) (2.31)

as the canonically normalized scalar field near the tip. Note that we have focused on two

regions in the deformed conifold, where the canonical inflaton can be defined as a simple

function of local coordinates. However, in general, the definition of the canonical inflaton

valid for the entire deformed conifold can be more involved, and it should interpolate be-

tween the two asymptotic limits (2.29) and (2.31). Furthermore, we restricted our analysis

above to cases where the multiple field trajectory is composed of a single field (the radial

direction) and consider only quantum fluctuations in the light angular directions. More

generally, however, the inflationary system consists of multiple fields for which simple ana-

lytic expressions of the canonical inflaton fields in terms of the coordinates is not possible.

In the setup of refs. [10, 13], inflation proceeds as a mobile D3 brane is driven towards

the tip of the warped deformed conifold, where a D3 brane is located. The D3-D3 in-

teractions are through two different potentials. In the closed string channel, D3 and D3

interact gravitationally via the potential

VD3D3(|y − ȳ|) =
D(|y − ȳ|)
[U(r, σ)]2

, (2.32)

where

D(|y − ȳ|) = D0

(
1 − 3D0

16π2T 2
3 |y − ȳ|4

)
. (2.33)

Here D0 = 2T3a
4
0 is the warp factor at the tip of the warped deformed conifold. One

should remember that |y− ȳ| contains both radial and angular separations.2 Furthermore,

in the open string channel, which becomes relevant as the D3-D3 separation approaches

the local string length, tachyon condensation develops, whose contribution to the overall

scalar potential can be derived from open string one-loop computation is given by

Vtach(|y − ȳ|) = T3|T |2
(
|y − ȳ|2 − a2

0α
′
)

+ · · · , (2.34)

where T is the complex tachyon field. The dot ellipsis indicates that the tachyon potential

can receive higher order contributions in D3-D3 separation |y − ȳ| [38]. While the higher

order terms in the D brane separation can change the behavior of the tachyon potential

within the tachyon condensation surface, there is hardly an e-folds at such small separation

2The potential VD3D3
as written diverges when |y − ȳ| → 0. However as demonstrated in ref. [38], the

Coulombic potential gets smoothed out to finite value through regularization as the separation becomes

local string length.
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that such higher order contributions can be ignored. To estimate the range the tachyon

condensation surface occupies in the coordinate space, we can consider near the tip, where

the local geometry approaches R × S2 × S3. The D3-D3 separation then becomes

|y − ȳ|2 ≈ ǫ4/3
[
τ2 + τ2(∆Ω2) + ∆Ω3

]
. (2.35)

Here τ is related to r via (2.25) and in this coordinate D3 radial position is τ = 0, and

∆Ω2 and ∆Ω3 denote the finite angular separations between D3 and D3 on S2 and S3,

respectively. One should also note that in addition to the D3 at the tip of the deformed

conifold, there can be additional distant D3 or other supersymmetry breaking sources, e.g.

D7 with supersymmetry breaking worldvolume flux, present in the bulk. Their presence

also increases the potential energy and needs to be taken into account: in fact they will

play an important role in our subsequent discussion.

In the presence of D3 or D7 branes which wrap on a specific supersymmetric four

cycle in the throat and generate non-perturbative superpotential, some of the angular

coordinates which correspond to broken isometries are stabilized by the F -term scalar

potential VF . Furthermore the stabilized values of these directions are in fact the same for

D3 and D3 [31, 39]. However there can also be residual isometry direction(s) which remain

light compared with the canonical inflaton. Thus generally inflation ends when these fields

reach the tachyon condensation surface given by

ǫ4/3
[
τ2 + τ2(∆Ωres

2 ) + ∆Ωres
3

]
= a2

0α
′ . (2.36)

Here ∆Ωres
2 and ∆Ωres

3 indicate that the only varying angular coordinates correspond to

the residual isometry directions, and their precise expressions depend on the specific em-

beddings.

As the deformed conifold is usually attached to a compact bulk Calabi-Yau manifold,

which contains additional ISD fluxes that further break these flat residual isometries, these

can possibly give masses to the corresponding D3 and D3 fields. To analyse such effects

for D3, we can consider a probe D3 and use gauge/string duality [40] (building on earlier

works [41, 42]), the symmetry breaking can be encoded by deforming the probe worldvolume

theory with irrelevant operators. However the consistent equations of motion would then

require such terms to be vanishing, that is for D3, the bulk flux does not generate masses

for the residual symmetry fields. For D3, such bulk flux generates perturbation in its

action through the dependence on the warp factor, an estimate for such effect was given

in ref. [43]: this generates a mass to the residual isometry fields for D3 of the order

m2
bulk ∼ an

0

gsMα′
, (2.37)

with n ≥ 3.29, so that the bulk mass for D3 residual isometry is exponentially suppressed,

and we still have an approximate isometry.3

3Attentive readers may also note that there can be further contribution to the potential for the D3

residual isometry direction coming from (2.32), which can give an effective mass of O
`

a2

0

´

. However in the

scenario which will be described later, such term will be decoupled.
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3. The residual isometries and the Lyth effect

In this section, we will give a general discussion on the mechanism proposed in ref. [22],

which can potentially generate significant contributions to the curvature perturbation at

the end of inflation due to the presence of the light residual isometry fields. Furthermore we

will also outline the necessary criteria for such effect to take place in a warped throat. Some

earlier related discussions in the context of brane inflation appeared in refs. [23, 44], though

as we will see, our results differ in details. In the following, we will refer to this additional

contribution to the inflationary perturbation at the end of inflation as the Lyth effect.

To begin our discussion, let us first estimate the maximum value at which the residual

isometry direction(s) can reach on the tachyon surface. For simplicity we consider the

situation where only a single residual isometry Θ is present.4 The tachyon condensation

surface is given by (2.36), from which we can estimate the maximum D3-D3 angular

separation ∆Θc in the residual isometry direction for the inflationary trajectory to reach

the tachyon surface in field space. This occurs when τ = 0 and D3 reaches non-vanishing

S3 at the tip of deformed conifold. Simple algebra then gives

∆Θc =
1

Γ3
√
gsM

. (3.1)

Here we have used the definition 1/T3 = (2π)3gsα
′2 and Γ3 denotes a measure factor on S3

which depends on the angular stable trajectory for the specificD7 embedding. We have also

absorbed the O(1) numerical factor in the definition of ǫ2 into Γ3. It is worth noting that

the maximum angular separation ∆Θc is not warp factor suppressed because of the a2
0 factor

in ǫ4/3. This is in contrast to the singular conifold case where ∆Θc is suppressed by a0, in

which case the angular range is exponentially small. While the factor 1/
√
gsM is generally

small, the measure factor 1/Γ3 can be large, and whether ∆Θc constitutes a fine-tuned

initial condition needs to be examined on a case-by-case basis. If ∆Θc exceeds the allowed

value for ∆Θ, tachyon condensation would necessarily take place away from S3 at τ > 0.5

The canonical normalization for a residual isometry direction Θ on S3 is given in

ref. [31] such that

ϑ =
√
T3gsMα′e−2ua0Γ3∆Θ . (3.2)

To precisely extend the analysis in the near tip region, where the metric is given by (2.24),

one also should consider the contribution from S2 as the isometry direction Θ can generally

fiber over both S2 and S3. Assuming only τ and Θ directions are dynamical, the metric

takes the generic form dτ2 +
(
Γ2

3 + τ2Γ2
2

)
dΘ2. Finding the canonically normalized residual

isometry field would require diagonalization of such metric. Nevertheless, since Γ2 and Γ3

4Here we use Θ to highlight such a special residual angular direction and in general it should be a

function of the usual angular coordinates given in appendix A, whose specific form is dictated by specific

D7 brane embedding.
5A small mass due to bulk fluxes on the D3 residual isometry direction discussed earlier may change the

story. However it is proportional to a3.29
0 , which is even smaller than the possible effective mass of O

`

a2

0

´

coming from the Coulombic term. Therefore if we can ignore the Coulombic contribution in our proposed

scenario discussed in the next section, we should similarly ignore such contribution to D3 for consistency.
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can at most be O(1), we expect the canonical normalization (3.2) remains valid at the

leading order of a τ2 expansion. Therefore in such an approximation, the allowed value for

ϑ at the end of inflation when it reaches the tachyon surface is bounded by

ϑe ≤ ϑc =
√
T3gsMα′e−2ua0Γ3∆Θc =

a0e
−2u

√
(2π)3gsα′

. (3.3)

From (2.31) and (2.36), we can obtain the relation between the value of canonical inflaton

at the end of inflation and the residual isometry as

φτ
e(ϑe) =

√
T3

2
e−4u

[
a2

0α
′ − a2

0gsMα′Γ2
3(∆Θe)2

]
=

√
ϑ2

c − ϑ2
e

2
. (3.4)

Until now the analysis has been classical, however additional curvature perturbation can

be generated at the end of inflation due to the quantum fluctuations of ϑ.

In our case where there are two fields associated with the radial direction which is iden-

tified as the inflaton and the residual isometry direction, following the δN formalism [45]

the power spectrum can in principle be separated into two parts as

Pζ =

(
Hk

2π

)2

N2
,φ +

(
Hk

2π

)2

N2
,ϑ ≡ Pζφ

+ Pζe , (3.5)

where the subscript k denotes the quantity evaluated at the moment where the perturbation

associated with the wave number k crosses the horizon during inflation, and

N =

∫ te

tk

Hdt (3.6)

is the number of e-folds. Notice that we have not used the subscript φτ but φ for the canon-

ical inflaton, as its definition in terms of the usual radial coordinate requires precise identifi-

cation of the horizon exit scale in the full deformed conifold, and we hope this does not con-

fuse with the angular coordinate. Here Pζφ
is the power spectrum generated by the canon-

ical inflaton field at the moment of horizon crossing and is given by the standard formula

Pζφ
=

1

2M2
Plεk

(
Hk

2π

)2

, (3.7)

where

ε ≡ M2
Pl

2

(
∂V/∂φ

V

)2

(3.8)

with V being the inflaton potential is the slow-roll parameter. Whereas Pζe is the additional

contribution due to the quantum fluctuations of ϑ at the end of inflation, whose explicit

form we will write out shortly. Note that the common prefactor Hk/(2π) in (3.5) comes

from the fact that both φ and ϑ are relatively light compared with Hk during inflation.

In general, ϑ is lighter than the canonical inflaton field (see (2.37) and the discussion

below) and does not contribute significantly to the field trajectory. But towards the end of

inflation, the isometry direction ϑ comes into the play since φτ
e does depend on the light

– 11 –
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field ϑe via (3.4) and in turn its quantum fluctuation δϑ(x) can give spatial dependence to

φτ
e. In other words, φτ

e(x) takes slightly different values at different parts of the universe,

and such spatial variations can be quantified using the perturbation in the number of e-

folds at the end of inflation, δN |e = ζe(x). This extra ζe at the end of inflation is a new

contribution to the total curvature perturbation other than ζφ due to the canonical inflaton.

Let us now derive the explicit form of Pζe . Since the inflationary epoch is completely

dominated by the canonical inflaton φ, we have the single field result

N,φ ≡ ∂N

∂φ
=
H

φ̇
(3.9)

so that

N2
,φ =

(
H

φ̇

)2

=
1

2M2
Plε

. (3.10)

The derivative of the extra e-folds at the final moment is given by

∂N

∂ϑ

∣∣∣∣
e

=
∂N

∂φ

∂φ

∂ϑ

∣∣∣∣
e

=
1√

2M2
Plεe

∂φτ
e

∂ϑe
, (3.11)

where the subscript φτ indicates the canonical inflaton near the tip given by (2.31) and the

derivative ∂φτ
e/∂ϑe can be derived from (3.4) as

∂φτ
e

∂ϑe
= − ϑe√

2
√
ϑ2

c − ϑ2
e

. (3.12)

Therefore the additional power spectrum generated at the end of inflation is given by

Pζe =
1

2M2
Plεe

[
∂φτ

(e)

∂ϑe

]2(
Hk

2π

)2

=
1

4εe

ϑ2
e

ϑ2
c − ϑ2

e

(
Hk

2πMPl

)2

. (3.13)

Here, εe is the slow-roll parameter evaluated at φτ = φτ
e, and one can substitute away the

ϑe dependence above using (3.4). For this contribution to dominate, by comparing (3.7)

with (3.13), we require ∣∣∣∣
∂φτ

e

∂ϑe

∣∣∣∣ &
√
εe
εk
. (3.14)

Using (3.12) this becomes the condition

ϑk &

√
εe

(
εe +

εk
2

)−1
ϑc , (3.15)

where we have used the fact that ϑ is very flat so that its amplitude is almost frozen

during the whole inflationary phase, i.e. ϑk ∼ ϑe. In order for the two contributions to the

power spectrum Pζ in (3.5) to be comparable, we need the slow-roll parameter ε to remain

small at the end of inflation, so that (3.12) to be of O(1). However if such conditions are

satisfied, as can be read from (3.13), the resulting power spectrum is very sensitive to the
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angular motion towards the end of inflation and thus the naive prediction of Pζ based on

the estimate made far from the tip can be completely spoiled.

To estimate the non-linear parameter fNL [46], we need to go beyond the leading

expansion of ζe: using (3.11), we can easily find that

3

5
fNL ≈ 1

2

{
∂2N/∂φ2

(∂N/∂φ)2

∣∣∣∣
e

+
∂2φτ

e/∂ϑ2
e

(∂N/∂φ|e)[∂φτ
e/∂ϑe]2

}
. (3.16)

From (3.9), we can see that the first term in the curly brackets becomes

∂2N/∂φ2

(∂N/∂φ)2

∣∣∣∣
e

= ηe − 2εe , (3.17)

where

η ≡M2
Pl

∂2
V/∂φ2

V
(3.18)

is another slow-roll parameter, and the second term

∂2φτ
e/∂ϑ2

e

(∂N/∂φ|e)[∂φτ
e/∂ϑe]2

= 2
√
εe

(
ϑc

ϑe

)2 MPl√
ϑ2

c − ϑ2
e

. (3.19)

So far we have only considered the simplified situation where only the tachyon poten-

tial (2.34) is present and have hence ignored other potential terms which can also become

dominant near the end of inflation. One candidate is the D3-D3 Coulombic interaction

in (2.33) which can be ignored at large radius where the singular conifold approximation

is sufficient, but can dominate near the tip of the deformed conifold. In fact as both the

Coulombic and the tachyon potential depend on the D3-D3 separation |y − ȳ|, if they

dominate towards the end of inflation, the inflationary trajectory would be driven to inci-

dent on the tachyon surface at a right angle. By an appropriate rotation in the φτ -ϑ plane,

the effect described earlier can then be shown to vanish, as on the tachyon surface there

is no orthogonal component for the field trajectory. To have a significant Lyth effect as

we described above, it is necessary in our case to ensure that the Coulombic potential is

insignificant, hence the end-of-inflation surface differs from the equi-energy surface.6

Another necessary criterion for the Lyth effect to give a significant contribution is that

the slow-roll parameter ε remains small at the onset of tachyon condensation: in other

words, inflation should persist into the deformed conifold region. As we will demonstrate

explicitly in the later sections and appendices, the Coulombic interaction which tend to

give large ε near the tip can be naturally made insignificant (depending on the uplifting

mechanisms), and so inflation ends only when the D3-D3 annihilates.

4. An alternative scheme for uplifting

Having reviewed the Lyth effect and the necessary conditions for it to take place in brane

inflation, in this section, we will begin with elucidating different possible uplifting mecha-

nisms for generating de Sitter vacua necessary for a realistic vacua at the end of inflation.

6This is however not necessarily true in general, since the number of e-folds depends non-locally on the

dynamics during inflation: see e.g. ref. [47]. We thank Misao Sasaki for related communications.
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By considering the relative strengths between these potentials in a warped throat, we then

propose an alternative scenario where the distant sources or D-terms on D7 branes dom-

inate over the D3 at the tip of deformed conifold in contributing to the vacuum energy,

and are responsible for the majority of uplifting. This allows us to decouple the D3-D3

Coulombic potential towards the end of inflation.

4.1 Uplifting potentials

In general, the F -term scalar potential VF generated by flux and non-perturbative cor-

rection gives rise to an anti de Sitter minimum after all the moduli are stabilized [21].

To obtain a de Sitter vacuum at the end of inflation, it is therefore necessary to include

extra uplifting term(s) to raise the cosmological constant to a positive value. In the setup

described earlier, the leading term D0/[U(r, σ)]2 in the D3-D3 potential given by (2.32) es-

sentially plays that role. To obtain a small positive cosmological constant, one can estimate

that at the tip of the deformed conifold [13]

1 <
D0/[U(ǫ2/3, σF )]2

|VF (ǫ2/3, σF )| . O(3) . (4.1)

Here σF is the stabilized volume before the uplifting and ǫ2/3 indicates that the potentials

are evaluated at the bottom of the throat. One should also note that the upper bound

is required for the stability of the σF . The requirement (4.1) couples the scale of the

Coulombic potential D0 to the scale of VF . Away from the tip, the adiabatic approximation

can be taken such that σ remains at its instantaneous minimum at each radial location, and

σ⋆(r) can be shown to be a monotonously increasing function of r. Since |VF | ∼ exp(−aσ)/σ

which reaches its maximum at the tip, one can then ensure a positive cosmological constant

provided that the lower bound of (4.1) is satisfied.

In addition, if there are also distant D3 branes present outside the throat, for example

in other throat(s), they can also contribute to the vacuum energy and their contribution

can be given by

Vother =
Dother

[U(r, σ)]2
. (4.2)

In general, we do not know the explicit value ofDother. However it is important to know that

as these extra D3 branes are outside the warped deformed conifold, Dother is independent of

the warp factor a0, and such a contributions can outweigh VD3D3 whose magnitude is con-

trolled by a0. Inclusion of such a contribution will also modify (4.1) fromD0 → D0+Dother.

An alternative approach was suggested in ref. [48] by localizing supersymmetry break-

ing flux on the D7 brane worldvolume,7 which induces a D-term potential in the low energy

effective four dimensional supergravity. The advantage of this approach is that the uplift-

ing effect can be studied within a field theoretical framework. For our purpose, in the most

7The four cycle where D7 wraps on does not necessarily have to be the ones where gaugino condensation

takes place.
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simplistic setup,8 such D-term potential is given schematically by

VD−term(r, σ) =
vD

[U(r, σ)]3
. (4.3)

The precise value of the constant vD depends on the explicit world volume flux FD7 and is

proportional to the integral
∫
Σ4
Ĵ ∧ FD7 [49], where Ĵ is the pull-back of the Kähler form

of the ambient Calabi-Yau onto the four cycle the D7 wraps on. The four cycles which

D7 branes wrap on can be outside the warped throat or if they are inside the warp throat,

explicit power counting can then show that vD should contain additional extra warped

factor a4
0 [50].

Notice that while (4.3) is proportional to [U(r, σ)]−3, unlike VD3D3, it does not depends

on the D3-D3 separation |y − ȳ|. Furthermore, as noticed in refs. [51, 52] and explicitly

demonstrated in ref. [50] (using the results of ref. [53]) D-term uplifting is subjected to an

extra constraint. In N = 1 supergravity, the magnitude of the D-term potential is in fact

proportional to that of F -term DΣW , therefore the D-term potential (4.3) cannot uplift a

supersymmetric anti de Sitter minimum satisfyingDΣVF = 0.9 However by explicitly intro-

ducingD3 hence breaking supersymmetry, we can in principle circumvent such constraint.10

We can write these uplifting potentials in an universal fashion as

VD(r, σ) =
D(|y − ȳ|)
[U(r, σ)]b

, (4.4)

where

D(|y − ȳ|) =





D0

(
1 − 3D0

16π2T 2
3 |y − ȳ|4

)
+Dother for D3-D3 (b = 2) ,

vD for D-term (b = 3) .

(4.5)

Here we have included the term

VCoulomb = − D0

[U(r, σ)]2
3D0

16π2T 2
3 |y − ȳ|4 (4.6)

in the D3-D3 interaction to highlight the fact that its scale is also set by D0, even though

it gives a negative contribution to the total energy. The interplay between the D-term

potential VD and the F -term scalar potential VF will become crucial when we later consider

the possibility of generating significant contribution to the curvature perturbation at the

end of inflation.

8By simplistic we means that we have ignore the contribution coming from the additional matter field

charged under the U(1) gauge field associated with FD7, and furthermore this configuration can be gener-

alized to non-Abelian gauge group U(N).
9This is a generic feature of VF of KKLT type, however such a D-term has been shown to uplift non-

supersymmetric anti de Sitter minimum [50, 52].
10We are grateful to Fernando Quevedo for a discussion on this point.
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4.2 Proposed scenario

In contrast to ref. [13] which we briefly review in appendix B, in the scenario we will

consider, while a D3 brane can still be present at the tip of the deformed conifold for

tachyon condensation to take place at the end of the inflation, the additional distant D3

branes or supersymmetry breaking D7 branes will be responsible for uplifting. That is, in

terms of their magnitude,

Dother ≫ D0 , (4.7)

or equivalently

vD ≫ D0U(r, σ) . (4.8)

In other words, we would like to decouple theD0 dependent terms in (4.5): in particular the

Coulombic term VCoulomb ∼ −D2
0|y− ȳ|−4 ∝ a8

0|y− ȳ|−4 is decoupled in the entire throat.

Such decoupling of Coulombic interaction is very natural. The maximal magnitude

VCoulomb can take is given by 3a4
0/(4π

2α′2U2), which corresponds to the D3-D3 separation

|y − ȳ|2 on the tachyon condensation surface. Without additional dominating uplifting

sources, such potential dominates near the tip region, and the scale of |VF (ǫ2/3, σF )| is

therefore coupled to that of the Coulombic term D0. This also implies |VF (ǫ2/3, σ)| ∝ a4
0,

although VF does not contain a0 in its expression a priori. However in the presence of

additional dominating uplifting sources, the scale of VF does not have to couple to D0, but

rather should couple to these additional uplifting terms whose magnitudes are independent

of the warp factor a0. This can allow VF (r, σ) − VF (ǫ2/3, σF ) to dominate over the D3-D3

Coulombic interaction VCoulomb not only at large radius but also in the near tip region.

Here we introduce a parameter s given by the ratio

s =
V

(+)
D (ǫ2/3, σF )

|VF (ǫ2/3, σF )| , (4.9)

where V
(+)
D denotes that we are only keeping the positive definite term in both expressions

in (4.5). This allows us to write the overall potential we are considering schematically as

V =VF (r, σ) + VD(r, σ) + Vend

=δVF + δV
(+)
D + VCoulomb + Vend + (s− 1)

∣∣∣VF (ǫ2/3, σF )
∣∣∣ , (4.10)

where

δVF =VF (r, σ) − VF (ǫ2/3, σF ) , (4.11)

δV
(+)
D =V

(+)
D (r, σ) − V

(+)
D (ǫ2/3, σF ) , (4.12)

and Vend consists of the potentials that only becomes significant near the end of inflation,

e.g. the tachyon potential (2.34) and the possible bulk mass term for the residual isometry

direction. Notice that as U(r, σ) can be shown to be a monotonously increasing function of

r, δVF is positive definite while δV
(+)
D is negative definite. With a slight abuse of notation,

here we have not specified VD: it can in principle consist of contributions from the distant
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D3, or supersymmetry breaking D7, or both along with D3 at the tip. The condition (4.7),

or equivalently (4.8), then translates into the requirement

δVF ≫ VCoulomb , (4.13)

and we consider the situation where this condition holds for all values of the mobile D3

brane coordinates. In terms of the available parameters which we can tune, (4.13) translates

into the condition |A0|M−3
Pl ≫ a4

0/(M
4
Plα

′2), where |A0| appears in (2.13). As M2
Plα

′ ≥ 1

and a0 ≪ 1, the condition (4.13) can be easily met with suitable choice of A0.

In the absence of D-term uplifting potential, such decoupling of VCoulomb ∼ a8
0|y− ȳ|−4

does not yield significant qualitative differences to the overall inflaton potential at large

radius r ≫ ǫ2/3. The canonical inflation potential should behave qualitatively similar to

the one in ref. [13] (see (B.4)). In fact, one can show that the potential (B.4) can yield small

slow-roll parameter ε until very small radius (see appendix B), that is, inflation can persist

well into the deformed conifold. Moreover, at small radius r ≈ ǫ2/3 where inflation ends,

the condition (4.13) can in principle allow for significant contributions to the curvature

perturbation via the Lyth effect discussed earlier, leading to noticeable changes in the power

spectrum Pζ and the non-linear parameter fNL due to the residual isometry direction.

5. An explicit case study of the Lyth effect in brane inflation

In this section, we will first calculate the canonical inflaton potential near the tip of the

deformed conifold with non-perturbative superpotential generated by the Kuperstein em-

bedding [24], and demonstrate that the slow-roll parameter ε can remain small near the tip

region for the uplifting scenario described in the previous section. We will then discuss the

possibility of the Lyth effect in this setup. We will demonstrate that, for the specific angu-

lar stable trajectory of this embedding, the residual isometry direction becomes degenerate

for the entire deformed conifold, hence the accidental disappearance of the Lyth effect. We

therefore conclude that while the general setup described earlier constitutes the necessary

criteria for the residual isometries to significantly affect observations, the angular stable

inflationary trajectory, governed by the geometry of the specific embedding, will determine

whether it actually takes place or not.

5.1 Potential near the tip of deformed conifold

Near the tip of the deformed conifold, the complicated Kähler potential (A.27) simplifies

to (A.28) after using the constraint (2.22) to rewrite

z4 = ±
[
ǫ2 −

3∑

i=1

(zi)2

]1/2

. (5.1)
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Using the formula given in ref. [15], the metric and its inverse derived from the simplified

Kähler potential (A.28) are given by

kij̄ =
c

ǫ2/3

(
δij̄ +

ziz̄j
|z4|2

)
, (5.2)

kīj =
ǫ2/3

c

(
δīj − ziz̄j

r3

)
. (5.3)

Here the indices ī, j = 1, 2, 3, where we have also used (2.25). Raising and lowering of the

indices is done by δi
j . Using (5.2) and (5.3), we can find the F -term scalar potential valid

near the tip of deformed conifold as

VF = VKKLT + ∆VF , (5.4)

where

VKKLT =
2κ2ae−2aσ |A(zi)|2

[U(r, σ)]2

{
1+W0e

aσRe

[
eiaς

A(zi)

]
+
a

6

[
2σ−γk0+cγǫ4/3

(
1− ǫ2

r3

)]}
,

(5.5)

∆VF =
κ2e−2aσ

3[U(r, σ)]2




ǫ2/3

cγ


|Ai|2−

(∑3
i=1 z̄

iAi

)(∑3
j=1 z

jAj̄

)

r3


−Re

[
AAi

(
zi−z̄i ǫ

2

r3

)]
,

(5.6)

where Ai = ∂A(z)/∂zi and Aj̄ = ∂A(z)/∂z̄j so that if A(zi) becomes constant ∆VF

vanishes and VKKLT reduces to the F -term scalar potential considered in refs. [10, 21]. Here

we have separated the contribution from the dependence of non-perturbative superpotential

on the mobile D3 brane, ∆VF .

We can now again consider specifically the Kuperstein embedding [24]

f(zi) = z1 − µ , (5.7)

and without loss of generality we will take real deformation parameter µ ∈ R and ǫ ∈ R as

noted earlier. The function A(zj) and Ai(z
j) in (5.5) and (5.6) become

A(zj) =A0

(
1 − z1

µ

)1/n

, (5.8)

Ai(z
j) = − A0

nµ

(
1 − z1

µ

)1/n−1

δi1 . (5.9)

Evidently A(z1) and Ai(z
1) should preserve an SO(3) residual symmetry group of rotation

among {z2, z3, z4}. Importantly, with such a choice of D7 embedding, the F -term scalar

potential again reduces to a function of
{
σ, ς, r, |z1|2, z1 + z̄1

}
instead of all deformed coni-

fold coordinates, i.e.

VF ≡ VF (σ, ς, r, |z1|2, z1 + z̄1) . (5.10)
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The angular coordinates that appear explicitly in VF (σ, ς, r, |z1|2, z1 + z̄1) correspond to

the broken isometry directions and they are exclusively encoded in the combinations |z1|2
and z1 + z̄1, therefore to obtain the angular extremum trajectory amounts to finding the

trajectory where
∂|z1|2
∂Ψi

=
∂(z1 + z̄1)

∂Ψi
= 0 , (5.11)

where {Ψi} include all the broken angular isometry directions of the deformed conifold. In

appendix C, we explicit obtain the angular stable trajectory given by

z1 = −
√
r3 + ǫ2

2
, (5.12)

z2 = ± i

√
r3 − ǫ2

2
, (5.13)

z3 =z4 = 0 . (5.14)

Along such trajectory, the SO(3) residual isometry preserved by the D7 embedding (5.7)

is further broken down to SO(2) rotating z3 and z4. We can also stabilize the axion field

ς as in ref. [13], by arranging W0 to be a small negative constant. The resultant two-field

potential is then given by VF (r, σ) = VKKLT(r, σ) + ∆VF (r, σ), where

VKKLT(r, σ) =
2κ2ae−2aσ |A0|2

[U(r, σ)]2

(
1 +

√
r3 + ǫ2√

2µ

)2/n

×



1−eaσ |W0|

|A0|

(
1+

√
r3+ǫ2√

2µ

)−1/n

+
a

6

[
2σ−γk0+γcǫ4/3

(
1− ǫ2

r3

)]
 , (5.15)

∆VF (r, σ) =
κ2e−2aσ |A0|2
3n2[U(r, σ)]2

(
1 +

√
r3 + ǫ2√

2µ

)2(1/n−1) (
1 − ǫ2

r3

)

×
[
ǫ2/3

2µ2cγ
− 2an

√
r3 + ǫ2√

2µ

(
1 +

√
r3 + ǫ2√

2µ

)]
. (5.16)

We will now include the effect of the uplifting potential as given in (4.5). In our scenario,

we have decoupled VCoulomb, so we should strictly include the positive definite term, i.e.

V
(+)
D . We can also further integrate out σ by assuming that σ evolves adiabatically and

remains at its instantaneous minimum, which is given by

∂
[
VF + V

(+)
D

]
(r, σ)

∂σ

∣∣∣∣∣∣
σ=σ⋆(r)

= 0 . (5.17)

This eventually leads to a single field potential

V(r) = VF [r, σ⋆(r)] + V
(+)
D [r, σ⋆(r)] + Vend . (5.18)

Notice that we have not specified whether V
(+)
D is attributed to distant D3 or D7, as

in the absence of VCoulomb, these two cases can be treated on equal footing calculation-

ally. (5.17) is in fact a transcendental equation, which is solved numerically in general. But
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in appendix D we derive the lowest order approximated expression given by

σ⋆(r) ≈ σ0

[
1 +

c1
aσ0

(r − ǫ2/3)

]
, (5.19)

where the coefficient c1 is given by

c1 =
3ε1/3

4nµ

(
1 +

ε

µ

)−1

+ O
(

1

σ0

)
. (5.20)

Finally, we note that the function r(φτ ) can be derived from (2.25) and (2.31), and a good

working expression relating canonical inflaton to the radial coordinate r in this region can

be given by

r(φτ ) =

√
2

3T3
φτ

2 + ǫ4/3 . (5.21)

Now we have all the information to write the single field inflaton potential near

the tip of the deformed conifold. Putting (5.15), (5.16), (5.19) and (5.21) together, the

single field potential for the canonical inflaton φτ along the angular stable trajectory

z1 = −
√

(r3 + ǫ2)/2 is given by

V(φτ ) = VKKLT [r(φτ ), σ⋆(φτ )] + ∆VF [r(φτ ), σ⋆(φτ )] + V
(+)
D [r(φτ ), σ⋆(φτ )] + Vend , (5.22)

where

VKKLT[r, σ⋆(r)] =
2κ2a|A0|2e−2aσ⋆(r)

{U [r, σ⋆(r)]}2

(
1 +

√
r3 + ǫ2√

2µ

)2/n

×
{
1− |W0|

|A0|
eaσ⋆(r)

(
1+

√
r3+ǫ2√

2µ

)
−1/n+

a

6

[
2σ⋆(r)−γk0+γcǫ4/3

(
1− ǫ2

r3

)]}
,

(5.23)

∆VF [r, σ⋆(r)] =
κ2|A0|2e−2aσ⋆(r)

3n2{U [r, σ⋆(r)]}2

(
1 +

√
r3 + ǫ2√

2µ

)2(1/n−1) (
1 − ǫ2

r3

)

×
[
ǫ2/3

2cµ2γ
− 2an

√
r3 + ǫ2√

2µ

(
1 +

√
r3 + ǫ2√

2µ

)]
, (5.24)

V
(+)
D [r, σ⋆(r)] =

D(+)(|y − ȳ|)
{U [r, σ⋆(r)]}b

. (5.25)

The function D(+)(|y − ȳ|) can be read off from (4.5) by keeping only positive definite

term and Vend consists of the potentials that are significant at the end of inflation, e.g. the

tachyon potential.

5.2 Slow-roll parameter near the tip of the throat

Given the inflaton potential as (5.22), now we can calculate the slow-roll parameter (3.8)

which is needed in determining the overall amplitude of the power spectrum Pζ as (3.13) and
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we will demonstrate that it can remain small near the tip of deformed conifold in our sce-

nario, i.e. the inflaton potential (5.22) is very flat near the tip. By chain rule, we can write

ε =
M2

Pl

2

(
∂r

∂φτ

)2(∂V/∂r

V

)2

, (5.26)

where, using (5.21), the derivative of r with respect to φτ is given by

∂r

∂φτ
=

√
2

3T3

(
1 − ǫ4/3

r2

)
. (5.27)

As shown in more detail in appendix E, ε is a complicated function of r. To get a clearer

idea, let us evaluate the expression (5.26) at the tip: it reads

∂V/∂r

V

∣∣∣∣
r=ǫ2/3

=
1

s− 1

{
3 − sb

U(ǫ2/3, σF )

[
3ǫ1/3

4πµ
G − cγǫ2/3

]
+

2sbcγ

U(ǫ2/3, σF )
ǫ2/3 +

s

D

∂D

∂r

∣∣∣∣
r=ǫ2/3

+
3G2

4π2U(ǫ2/3, σF )

[
ǫ2/3

2cµ2γ
− 4π

ǫ

µ
G−1

]
ǫ2/3

}
, (5.28)

where

G =

(
1 +

ǫ

µ

)−1

. (5.29)

To work out the numerical value for (5.28), it is useful to express in terms of the geometric

parameters describing the bulk and the throat. How to write (5.28) in terms of which

parameters is described in appendix E, and the result is

∂V/∂r

V

∣∣∣∣
r=ǫ2/3

=
µ−2/3

s− 1

{
3 − sb

3NB4 logQµ

[
3

2
31/12

(
a0Qµ

c

)1/2
(

1 + 31/4

(
a0Qµ

c

)3/2
)

−B4

B6

2 · 21/3c logQµ

3Q2
µ

31/12

(
a0Qµ

c

)]
+

4 · 21/3sbc

9NB6Q2
µ

31/6

(
a0Qµ

c

)

+
2

NB4 logQµ

[
1 + 31/4

(
a0Qµ

c

)3/2
]−2

×
[
B6

B4

3Q2
µ

8 · 21/3c logQµ
−31/12

(
a0Qµ

c

)
1/2

(
1+31/4

(
a0Qµ

c

)3/2
)]}

.

(5.30)

To obtain a definite number, we use the sample set of parameters given in ref. [13]: N = 32,

Qµ = 1.2, B4 = 9, and B6 = 1.5. Then we can see that to the lowest order expansion

around the tip

ε(r) ≈ 0.00504265

(s− 1)2

(
1 − ǫ4/3

r2

)
. (5.31)

Two comments are in order: first, it is clear that exactly at the tip, i.e. r = ǫ2/3 the

slow-roll parameter is simply εtip = 0. Second, away from the tip, ε(r) can be reasonably

small by choosing the parameters to allow for significant curvature perturbation spectrum

at the end of inflation through the Lyth effect described in section 3. In figure 1, we show

the inflaton potential (5.22) and the slow-roll parameter ε (5.26).

– 21 –



J
H
E
P
0
9
(
2
0
0
8
)
0
1
1

1 2 3 4 5
2.304

2.306

2.308

2.310

2.312

r/ǫ2/3

V
×

1
0
1
2

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10
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Figure 1: (Left) the inflaton potential (5.22) and (right) the slow-roll parameter ε (5.26). We

normalize MPl = 1 and for simplicity we set A0 = 1. The point r/ǫ2/3 = 1 denotes the tip from

which there is no further radial displacement. As shown in the right panel, the potential is very

flat near the tip.

5.3 The angular stable trajectory and the degenerate residual isometry

In this section, we will argue that the angular stable trajectory near the tip region (5.12)–

(5.14) for the Kuperstein embedding (5.7) is in fact valid along the entire deformed

conifold by showing explicitly that the extremal values of the broken isometry directions

along (5.12)–(5.14) are identical to the ones for the stable trajectory in the singular coni-

fold (B.1), despite very different scalar potential in each region. Along this specific tra-

jectory, we will then show that the proper distance associated with the residual isometry

direction preserved by the Kuperstein embedding vanishes.

To begin with, we can rewrite the trajectory (5.12)–(5.14) in terms of the τ coordinate

defined in (2.25) such that

z1 = − ǫ cosh
(τ

2

)
, (5.32)

z2 = ± iǫ sinh
(τ

2

)
, (5.33)

z3 =z4 = 0 . (5.34)

Comparing the above with the deformed conifold coordinates (A.6)–(A.9), while one needs

to solve transcendental equations in general, for sufficiently simple trajectory like (5.32)–

(5.34), one can easily translate it in terms of the restriction on angular coordinates

+ : θ1 = θ2 = 0 ,
ψ + (φ1 + φ2)

2
= π , (5.35)

− : θ2 = θ2 = π ,
ψ − (φ1 + φ2)

2
= 0 . (5.36)

These two equivalent branches are the stabilized values of the isometry directions broken

by the Kuperstein embedding (5.7). Exactly the same combinations of angles also appear

when one compares the angular stable trajectory in the singular conifold (B.1) with the
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corresponding embedding coordinates written in terms of the angles. Since the embed-

ding coordinates (A.6)–(A.9) interpolate the entire throat, and that the stabilized angular

values are the same in both asymptotic regions, it is suggestive that the angular stable

trajectory (5.12)–(5.14) is valid not only in the regions near or far away from the tip but

also for the entire deformed conifold. It would be interesting to demonstrate this explicitly

with the inflaton potential derived from the full warped deformed conifold metric.

One should note that on each branch, the dependence on the combination [ψ ∓ (φ1 +

φ2)]/2 vanishes from the scalar potential VF (z1 + z̄1, |z1|2, r, σ), despite the fact that ψ and

(φ1 +φ2)/2 appear individually in z1 and z̄1. For each branch, the corresponding combina-

tion can take arbitrary value without affecting the resultant trajectory. Furthermore, it is

also obvious that the combination (φ1−φ2)/2 does not appear explicitly in z1 or z̄1 hence in

the scalar potential. Both (φ1−φ2)/2 and one of [ψ∓(φ1+φ2)]/2 are the residual isometries

preserved by the stable inflationary trajectory in the Kuperstein embedding (5.7).

The presence of the light additional residual isometries can in principle give significant

contribution to the power spectrum by the Lyth effect we discussed in section 3, by coupling

them with the canonical inflaton through the tachyon potential at the end of the inflation.

However the magnitude of such effect is also controlled by the stabilized values of broken

isometry directions, and the dependence is encoded in the measure factors Γ2 and Γ3. We

can easily calculate them by using (A.15)–(A.21) and writing out explicitly the metrics of

S2 and S3 in terms of the deformed conifold angular coordinates as

dΩ2 :
(2/3)1/3

8

[
(g1)

2 + (g2)
2
]
, (5.37)

dΩ3 :
(2/3)2/3

2

[
(g3)

2 + (g4)
2 +

1

2
(g5)

2

]
. (5.38)

Restricting them to the specific trajectories (5.35) and (5.36), we obtain

+ : dΩ2 = 0 , dΩ3 =
(2/3)2/3

2
{d [ψ + (φ1 + φ2)]}2 = 0 , (5.39)

− : dΩ2 = 0 , dΩ3 =
(2/3)2/3

2
{d [ψ − (φ1 + φ2)]}2 = 0 . (5.40)

Hence for both (φ1 − φ2)/2 and [ψ ∓ (φ1 + φ2)]/2, their measure factors Γ2 and Γ3 vanish

identically along (5.12)–(5.14), or equivalently (5.35) and (5.36). In other words, even

though the D3-D3 angular separations ∆[(φ1 − φ2)/2] and ∆{[ψ ∓ (φ1 + φ2)]/2} can be

finite, the proper separations along these directions in fact vanish. Therefore, despite

having the necessary conditions, e.g. small slow-roll parameter ε for the Lyth effect to be

potentially significant, the calculations here demonstrate that, due to the degeneracy of

the residual isometry directions, it in fact does not take place along the specific angular

stable trajectory considered. However, for other embeddings that preserve some residual

isometries on the S3 at the tip of the conifold [31], our results in section 3 can be used

to estimate the size of these end of inflation effects. One can easily use for example the

formula (3.13) to obtain the ratio between the power spectrum at the horizon exit and the

end of inflation as Pζe

Pk
=
εk
εe

1

2 [(ϑc/ϑe)2 − 1]
. (5.41)
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The ratio εk/εe can be as large as O(1),11 while (θc/θe)
2 & 1, therefore in the scenario we

described eariler, where Coulombic attraction is decoupled, Pζe can possibly give compa-

rable contribution to the power spectrum Pk.

6. Discussion

In this paper, we studied the systematics of multi-field effects at the end of warped D

brane inflation. We discussed the necessary criteria for the isocurvature perturbations

generated by the angular motion of a mobile D3 brane to be converted into the curvature

perturbations usually associated with its radial motion in this scenario. We found that

the significance of the end of inflation effects considered in ref. [22] depends on the specific

mechanism for uplifting the vacuum energy. If the uplifting is due to some distant D3

branes or a D-term potential, the Coulombic potential can easily become subdominant

even towards the end of inflation, and the effects described in ref. [22] can in principle be

significant. However, in the most explicit D brane inflation constructed to date [12, 13],

the D7 brane embedding chosen [24] does not yield such effects, regardless of the uplifting

mechanism. This latter result is specific to the embedding of the moduli stabilizing branes

as well as the infrared geometry of the throat. Along the stable trajectory for the embedding

considered in ref. [24], the proper distance for the residual isometry direction vanishes in the

entire throat, the moduli space vanishes at the tip. It would be interesting to examine other

D7 brane embeddings and/or other warped throats which leave a moduli space of vacua

at the tip. Examples of such embeddings for the deformed conifold appeared in ref. [31],

where the residual isometry directions reside on the finite size S3. However, finding an

angular stable trajectory in these examples may remain challenging. Nevertheless, our

results underscore the importance of multi-field effects in string inflation, as noted also in

the context of DBI inflation recently in ref. [54] (see also earlier discussions in refs. [55, 56]).

As discussed in section 3, the strength of the Lyth effect depends on the ratio εk/εe.

Since the flat region of the inflaton potential considered in refs. [12, 13] is an inflection

point, εk depends sensitively on where around the inflection point corresponds to the CMB

scale. Given a D brane inflation model which can yield the Lyth effect considered here,

a precise determination of the amplitude of such effects would require the use of the full

KS metric [37]. This is yet another context in which details of the warped geometries

in the infrared can have significant effects on the CMB observations [57]. Furthermore,

regardless of the Lyth effect studied here, a detailed comparison of the WMAP data with

microscopic parameters of D brane inflation requires identifying the relevant part of the

inflaton potential which generates the observed CMB anisotropy, and the full KS metric

is essential. Work along these lines is underway.

Finally, one may hope to also realize the curvaton mechanism [58] using these light

fields. In the setup we discussed, however, inflation ends as D3 and D3 annihilate and thus

the would-be curvaton fields themselves disappear. For the same reason, any multi-field

effect [59] after inflation will not be present as long as they are associated with D3 or

11See the discussion in appendix B.
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D3 branes. Nevertheless it would be interesting to implement the curvaton scenario in a

different setup satisfying a number of constraints [60].
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A. Details of the warped deformed conifold

Here we collect a few facts concerning the various coordinates parameterizing the deformed

conifold. It is defined via the equation

4∑

A=1

(zA)2 = ǫ2 , (A.1)

and the D7 brane embeddings we use are given in terms of one or the other of these sets

of coordinates. These coordinates can be related to coordinates on the S3 at the bottom

of the throat as follows. We follow ref. [61] with some modifications to their notation. We

define the matrix W as

W ≡ LW0R
† , (A.2)

with

W0 ≡
(
ǫ/
√

2
√
r3 − ǫ2

0 −ǫ/2

)
, (A.3)

where L and R are SU(2) matrices parameterized by three Euler angles (We are using the

standard r-variable on the conifold, related to that in ref. [61] by r = r
2/3
there). We choose

the convention

W =

(
−w3 w2

−w1 w4

)
= − 1√

2

(
z3 + iz4 z1 − iz2

z1 + iz2 − z3 + iz4

)
, (A.4)
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where we have chosen the w’s so as to agree with (32)-(35) of ref. [18] when we use the

parameterization of Euler angles given in (2.24) and (2.25) of ref. [61]. One indeed finds that

det W = w1w2 − w3w4 = −1

2

4∑

A=1

(zA)2 = −1

2
ǫ2 , (A.5)

as required. At generic r > ǫ2/3, one of the six Euler angles in L and R is redundant, and the

remaining five along with r parameterize the deformed conifold. For r ≫ ǫ2/3 the deformed

conifold is well approximated by the singular conifold, with the angles parameterizing T 1,1.

The complex embedding coordinates of deformed conifold {z1, z2, z3, z4} can be ex-

pressed in terms of the real coordinates {τ ∈ R , ψ ∈ [0, 4π] , θ1,2 ∈ [0, π] , φ1,2 ∈ [0, 2π]},
Ξ = τ + iψ as

z1 =ǫ

[
cosh

(
Ξ

2

)
cos

(
θ1+θ2

2

)
cos

(
φ1+φ2

2

)
+i sinh

(
Ξ

2

)
cos

(
θ1−θ2

2

)
sin

(
φ1+φ2

2

)]
, (A.6)

z2 =ǫ

[
− cosh

(
Ξ

2

)
cos

(
θ1+θ2

2

)
sin

(
φ1+φ2

2

)
+i sinh

(
Ξ

2

)
cos

(
θ1−θ2

2

)
cos

(
φ1+φ2

2

)]
, (A.7)

z3 =ǫ

[
− cosh

(
Ξ

2

)
sin

(
θ1+θ2

2

)
cos

(
φ1−φ2

2

)
+i sinh

(
Ξ

2

)
sin

(
θ1−θ2

2

)
sin

(
φ1−φ2

2

)]
, (A.8)

z4 =ǫ

[
− cosh

(
Ξ

2

)
sin

(
θ1+θ2

2

)
sin

(
φ1−φ2

2

)
−i sinh

(
Ξ

2

)
sin

(
θ1−θ2

2

)
cos

(
φ1−φ2

2

)]
. (A.9)

At the tip of the throat r = ǫ2/3, we can reduce the complex coordinates zA in terms of

the angles of the S3 {θ , ω , φ} as12

z1 =ǫ sin

(
θ

2

)
sin

(
ω − φ

2

)
, (A.10)

z2 =ǫ sin

(
θ

2

)
cos

(
ω − φ

2

)
, (A.11)

z3 =ǫ cos

(
θ

2

)
cos

(
ω + φ

2

)
, (A.12)

z4 =ǫ cos

(
θ

2

)
sin

(
ω + φ

2

)
. (A.13)

We see that in this case, S3 is a real slice of each zα coordinate and the metric is given by

dΩ3 = (dω + cos θdφ)2 + dθ2 + sin2 θdφ2 . (A.14)

A.1 Metric

It is convenient to work in a diagonal basis of the metric by using the basis of one forms [37]

g1 ≡e
1 − e3√

2
, g2 ≡ e2 − e4√

2
,

g3 ≡e
1 + e3√

2
, g4 ≡ e2 + e4√

2
,

g5 ≡e5 , (A.15)

12Note that the exact relation between these coordinates and those of (A.6)–(A.9) can be obtained by

identifying the non-vanishing S3 in the metric using the vielbeins defined in the next subsection.
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where

e1 ≡− sin θ1dφ1 , (A.16)

e2 ≡dθ1 , (A.17)

e3 ≡ cosψ sin θ2dφ2 − sinψdθ2 , (A.18)

e4 ≡ sinψ sin θ2dφ2 + cosψdθ2 , (A.19)

e5 ≡dψ + cos θ1dφ1 + cos θ2dφ2 . (A.20)

The metric of the deformed conifold is then

ds26 =
1

2
ǫ4/3K(τ)

{
1

3[K(τ)]3
[dτ2 + (g5)2] + cosh2

(τ
2

) [
(g3)2 + (g4)2

]

+ sinh2
(τ

2

) [
(g1)2 + (g2)2

]}
, (A.21)

where

K(τ) =
[sinh(2τ) − 2τ ]1/3

21/3 sinh τ
. (A.22)

The ten dimensional metric takes the warped form

ds210 = e2A(y)ηµνdx
µdxν + e−2A(y)ds26 , (A.23)

where the warp factor is given by the expression [37]

e4A(τ) = 22/3(gsMα′)2ǫ−8/3I(τ) , (A.24)

where

I(τ) ≡
∫ ∞

τ
dx

x coth x− 1

sinh2 x
[sinh(2x) − 2x]1/3 . (A.25)

A.2 Little Kähler potential

The warped deformed conifold metric (A.21) can be obtained from the “little” Kähler

potential k(zα, z̄β̄) as

g̃αβ̄ = ∂α∂β̄k . (A.26)

Because the angular directions of the warped deformed conifold are isometries they do not

appear explicitly in the little Kähler potential, and in general the Kähler potential only

depends on the radial coordinate τ through [61]

k(τ) =
ǫ4/3

21/3

∫ τ

0
dτ ′
[
sinh(2τ ′) − 2τ ′

]1/3
, (A.27)

where without loss of generality we set the integration constant to zero. Using the relation

between τ and r, we can approximately solve for the large and small r limits as

k(r) →





3

2
r2 for r ≫ ǫ2/3 ,

k0 +
c

ǫ2/3
(r3 − ǫ2) for r ≈ ǫ2/3 ,

(A.28)

where c = 21/6/31/3 ≈ 1.61887.
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B. Brief review of the “delicate universe”

In refs. [12, 13], the authors considered the region of large D3-D3 separation, so that the

deformed conifold can be approximated by its singular limit. The expression for the F -

term potential (2.14) is then greatly simplified. The non-perturbative superpotential is

generated by D3 or D7 brane wrapping a four cycle of the conifold (made compact by the

bulk geometry). Further, their presence partially breaks the full SO(4) isometry group of

the deformed conifold. For example, consider the simplest Kuperstein embedding given

by holomorphic function (5.7) which breaks SO(4) down to an SO(3) subgroup rotating

{z2, z3, z4}. The trajectory of the canonical inflaton then further breaks it to SO(2). One

should note here that in the presence of the bulk NS-NS B-field, the D7 brane embed-

ding (5.7) can remain supersymmetric without additional worldvolume flux: by contrast,

the supersymmetric D7 embeddings considered in the singular conifold limit as given in

refs. [62 – 64] can only remain supersymmetric on these four cycles in the deformed conifold

with additional worldvolume flux turned on [65].

Using the singular conifold metric and (5.7) to calculate VF , the authors then included

the Coulombic potential VD3D3 as given by (4.5) such that the cancellation of the negative

vacuum energy of VF is due to the combination of the D3 branes at the tip of the deformed

conifold and distant bulk. They stabilize the isometry directions broken by D7 branes, and

the resulting angular stable trajectory is given by

z1 = −r
3/2

√
2

↔ ∂(VF + VD3D3)

∂Ψi
= 0 . (B.1)

Here {Ψi} runs through the broken isometry directions and (B.1) also imposes constraints

on other embedding coordinates z2 = ±iz1 , z3 = z4 = 0. The axion ς can also be stabilized

by tuning the perturbative superpotential W0 to be negative. To proceed obtaining single

field inflation, an adiabatic approximation is taken to stabilize the volume modulus σ by

solving the equation

∂(VF + VD3D3)(r, σ)

∂σ

∣∣∣∣
σ∗

= 0 . (B.2)

The authors approximated the solution of (B.2) by

σ∗(r) ≈ σ0

[
1 + c3/2

r2

(2µ2)2/3

]
, (B.3)

where µ is the embedding parameter in (5.7) and the coefficient c3/2 ≈ [1−1/(2aσF )]/(nσF ),

and σ0 is the stabilized volume at the tip of the throat after including the uplifting term

VD3D3. Finally, the canonical inflaton φ was related to the radial coordinate of the mobile

D3 brane via (2.29).

Putting everything together, the single inflaton potential derived at large brane sepa-
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ration for the trajectory (B.1) is subsequently given by

V(φr) =
κ2a|A0|2e−2aσ∗

3[U(φr, σ⋆)]2
h(φr)

2/n

{
2aσ∗ + 6 − 6eaσ∗ |W0|

|A0|
h(φr)

1/n

+
3

nh(φr)

φr

φµ

[
c0 − h(φr)

√
φr

φµ

]}

+
D0 +Dothers

[U(φr, σ∗)]2
, (B.4)

where

h(φr) =1 +

(
φr

φµ

)3/2

, (B.5)

c0 =
9

4naσ0φ2
µ/M

2
Pl

, (B.6)

φ2
µ =

3

2
T3(2µ

2)2/3 . (B.7)

Here the approximation D(φr) ≈ D0 + Dothers is taken for large radius r ≫ ǫ2/3. The

explicit inflaton potential (B.4) represents one of the most well developed and top-down

brane inflation model to date, which explicitly includes the effects of compactification

and moduli stabilization. To obtain sufficiently flat region of V(φ), the parameters in the

inflaton potential need to be ‘delicately’ tuned. For the specific set of parameters considered

in ref. [13] (see below figure 2 there), the inflaton potential V(φ) has a sharp drop, however

it is induced by the D3-D3 Coulombic interaction which only becomes significant near

the tip of the throat, without which the inflaton potential is in fact smooth and inflation

continues until much smaller radius into the deformed conifold.13 However in such region,

the singular conifold approximation should break down. In figure 2 we show the effective

potential (B.4) and the related slow-roll parameters.14

Of course, it is possible that one can try to select a different set of parameters such that

the slow-roll parameters ε and η become order one at much larger radius without including

the Coulombic interaction. The point we would like to emphasize is that for the purpose of

parameter scanning, consistently excluding the tip region in the analysis of inflation imposes

further constraints (in addition to obtaining a sufficient number of e-folds, and the correct

amplitude of the power spectrum, etc). However if we relax such constraints and allow the

13We thank Daniel Baumann for communicating about this issue.
14To plot −Ḣ/H2, we have used [66]

−
Ḣ

H2
=

M2

Pl

2

„

V,φr

V

«2

−
M4

Pl

3

„

V,φr

V

«4

+
M4

Pl

3

„

V,φr

V

«2
V,φrφr

V

+
4

9
M6

Pl

„

V,φr

V

«6

−
5

6
M6

Pl

„

V,φr

V

«4
V,φrφr

V
+

5

18
M6

Pl

„

V,φr

V

«2 „

V,φrφr

V

«2

+
M6

Pl

9

„

V,φr

V

«2
V,φr

V,φrφrφr

V2
+ · · · . (B.8)
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Figure 2: (Upper left) the inflaton potential (B.4) and the resulting slow-roll parameters, (upper

right) ε and (lower left) η. We show both cases where the Coulombic piece proportional to r−4 is

present (solid line) and absent (dotted line). As can be seen, without the Coulombic term inflation

proceeds deep inside the throat, i.e. very small r region, but (B.4) is no more valid there. In the

lower right panel, we show −Ḣ/H2 which is exactly equivalent to the acceleration of the scale factor:

−Ḣ/H2 < 1 means acceleration. Clearly, the criteria |η| = 1 does not guarantee that inflation ends

at the corresponding point, especially when the Coulombic term is negligible which is the scenario

we discussed in the main text.

inflationary epoch to extend deep into the deformed conifold region, one needs to take into

account the full deformed conifold metric. As we have explicitly shown in the main text, ε

can remain small in this region, using the metric near the tip of deformed conifold. In other

words, inflation ends when the canonical inflaton reaches its limit in field range, rather than

when ε becomes large. In such case, there can potentially be an additional contribution to

the curvature perturbation arising from quantum fluctuations in the light residual isometry

directions, which can significantly modify the estimates made far from the tip.

In relation to the scenario we proposed in the main text, where VCoulomb is neglected,

the potential (B.4) should be regarded as the ultraviolet completion of our inflaton poten-

tial (5.22) with uplifting exclusively done by distant D3 branes. Assuming that the flat

region in (B.4) (near its inflection point) corresponds to the large observable scales, and

that most but not all the e-folds are generated there, this allows us to have an estimate of εk
near the horizon exit. To make such statement precise of course requires the calculation of
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the inflaton potential with respect to the full deformed conifold metric, this is an interesting

although potentially challenging direction, which we shall return in the near future.

C. Stability analysis for angular extremum trajectory

In this appendix we will explicitly obtain the angular extremum trajectory for the Ku-

perstein embedding (5.7) in the near tip region of deformed conifold, and demonstrate its

stability.

First, without lost of generality, we take both µ and ǫ to be real, and let us write the

F -term scalar potential VF = VKKLT + ∆VF in the following form:

VKKLT =
2aκ2|A0|2e−2aσ

[U(r, σ)]2

∣∣∣∣1 − z1
µ

∣∣∣∣
2/n{

1 − eaσ |W0|
|A0|

∣∣∣∣1 − z1
µ

∣∣∣∣
−1/n

+
a

6

[
2σ − γk0 + γcǫ4/3

(
1 − ǫ2

r3

)]}

=A(r, σ)

(
1 − z1 + z̄1

µ
+

|z1|2
µ2

)1/n{
1 − eaσ |W0|

|A0|

(
1 − z1 + z̄1

µ
+

|z1|2
µ2

)−1/(2n)

+ B(r, σ)

}
, (C.1)

and

∆VF =
κ2|A0|2e−2aσ

3n2[U(r, σ)]2

∣∣∣∣1 − z1
µ

∣∣∣∣
2(1/n−1) { ǫ2/3

cµ2γ

(
1 − |z1|2

r3

)

+
an

µ

[(
1 − z̄1

µ

)(
z1 − z̄1

ǫ2

r3

)
+ c.c.

]}

=C(r, σ)

(
1 − z1 + z̄1

µ
+

|z1|2
µ2

)1/n−1

×
{
ǫ2/3

cµ2γ

(
1 − |z1|2

r3

)

+ an

[
z1 + z̄1
µ

(
1 − ǫ2

r3

)
+

(z1 + z̄1)
2

µ2

ǫ2

r3
− 2|z1|2

µ2

(
1 +

ǫ2

r3

)]}
. (C.2)

Such explicit forms (C.1) and (C.2) will be useful in the subsequent stability analysis. Note

that both A and C have mass dimension 4 and the remaining terms are dimensionless, and

we have rewritten the expressions in terms of |z1|2 and z1+z̄1 wherever possible. From (C.1)

and (C.2), VF now becomes a function of σ, r, z1 + z̄1 and |z1|2. To extract the light degree

of freedom among all the isometry directions, we first try to stabilize as many angular

directions explicitly broken by the presence of D7 as possible.

Recalling the analysis of ref. [13], where the trajectory in the singular conifold along

which the linear variations of |z1|2 and z1 + z̄1 vanish, we can again apply this analysis and

write down the variation of z1 being

δz
(0)
1 =

4∑

j=2

αjz
(0)
j , (C.3)
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with αi ∈ R. Here
{
z
(0)
1 , z

(0)
2 , z

(0)
3 , z

(0)
4

}
are the coordinates of a fiducial point and from

here α2, α3, α4, β3, β4 ⊂ {Ψi} are local coordinates on the base of the cone. Vanishing of

the linear variations can then be written as

δ|z1|2 =
4∑

j=2

αj

[
z
(0)
1 z̄

(0)
j + z̄

(0)
1 z

(0)
j

]
= 0 , (C.4)

δ(z1 + z̄1) =i

4∑

j=2

αj

[
z
(0)
j − z̄

(0)
j

]
= 0 . (C.5)

For (C.4) to be satisfied for all {αi}, we need to have

z
(0)
j = i̺jz

(0)
1 , (C.6)

where ̺j ∈ R. Using the SO(3) symmetry, one can set ̺2 6= 0 while ̺3 = ̺4 = 0. (C.5) then

implies z
(0)
1 is strictly real. Subjecting z

(0)
1 and z

(0)
2 to the constraint

(
z
(0)
1

)2
+
(
z
(0)
2

)2
= ǫ2

and the definition r3 = |z1|2 + |z2|2 =
(
z
(0)
1

)2
+
∣∣∣z(0)

2

∣∣∣
2
, we can see that

̺2 = ±
√
r3 − ǫ2

r3 + ǫ2
, (C.7)

leading to the angular extremum trajectory along

z
(0)
1 = ±

√
r3 + ǫ2

2
, (C.8)

z
(0)
2 = ± i

√
r3 − ǫ2

2
. (C.9)

Notice that in the singular conifold limit ǫ→ 0, (C.8) and (C.9) reduce to the one in (B.1).

Let us now proceed with the stability analysis for (C.8) and (C.9). We first notice that

along these trajectories the linear perturbations in |z1|2 and z1 + z̄1 disappear, and we can

further see that

z1 =z
(0)
1

[
1 − 1

2

(
α2

2 + α2
3 + α2

3

)
+
i

2
̺2 (2α2 − α3β3 − α4β4) + · · ·

]
, (C.10)

z1 + z̄1 =2z
(0)
1

[
1 − 1

2

(
α2

2 + α2
3 + α2

3

)
+ · · ·

]
, (C.11)

|z1|2 =z
(0)
1

2
[
1 −

(
2ǫ2

r3 + ǫ2
α2

2 + α2
3 + α2

4

)
+ · · ·

]
. (C.12)

Then we find that

∂2|z1|2
∂Ψi∂Ψj

∣∣∣∣
0

= − (r3 + ǫ2)

(
2ǫ2

r3 + ǫ2
δi2δj2 + δi3δj3 + δi4δj4

)
, (C.13)

∂2(z1 + z̄1)

∂Ψi∂Ψj

∣∣∣∣
0

= ∓
√

2(r3 + ǫ2)(δi2δj2 + δi3δj3 + δi4δj4) , (C.14)
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so that the mass matrix along the extremal trajectory is given by

∂2V

∂Ψi∂Ψj

∣∣∣∣
0

=




X + 2ǫ2Y/(r3 + ǫ2) 0 0 0 0

0 X + Y 0 0 0

0 0 X + Y 0 0

0 0 0 0 0

0 0 0 0 0



, (C.15)

where

X = ∓
√

2(r3 + ǫ2)
∂V

∂(z1 + z̄1)

∣∣∣∣
0

, (C.16)

Y = − (r3 + ǫ2)
∂V

∂|z1|2
∣∣∣∣
0

. (C.17)

Therefore, three angular directions, viz. α2, α3 and α4 have definite masses squared no

matter positive or negative, while β3 and β4 remain perfectly flat unless any other effect

which breaks the symmetry is introduced, e.g. bulk mass terms. Hence, if we are to look

for light angular directions which can give rise to interesting and/or dangerous effects at

the end of inflation, there are two of them provided that the other three directions are

stabilized. First we must check whether this is indeed achieved.

From (C.1) and (C.2), after some calculations, we can find that for VKKLT

∂VKKLT

∂(z1 + z̄1)

∣∣∣∣
0

=− A
nµ

∣∣∣∣∣1∓
√
r3+ǫ2√

2µ

∣∣∣∣∣

−2(1−1/n)

1− eaσ

2

|W0|
|A0|

∣∣∣∣∣1∓
√
r3+ǫ2√

2µ

∣∣∣∣∣

−1/n

+B


 , (C.18)

∂VKKLT

∂|z1|2
∣∣∣∣
0

=
A
nµ2

∣∣∣∣∣1∓
√
r3+ǫ2√

2µ

∣∣∣∣∣

−2(1−1/n)

1− eaσ

2

|W0|
|A0|

∣∣∣∣∣1∓
√
r3+ǫ2√

2µ

∣∣∣∣∣

−1/n

+B


 , (C.19)

and for ∆VF

∂∆VF

∂(z1 + z̄1)

∣∣∣∣
0

=
C
µ

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

−2(2−1/n)

×
{(

1− 1

n

)[
ǫ2/3

cµ2γ

r3 − ǫ2

2r3
−an

(
1− ε2

r3

)√
2(r3+ε2)

µ

(√
r3+ǫ2√

2µ
∓1

)]

+an

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

2 [(
1 − ǫ2

r3

)
± 2

√
2(r3 + ǫ2)

µ

ǫ2

r3

]
 , (C.20)

∂∆VF

∂|z1|2
∣∣∣∣
0

= − C
µ2

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

−2(2−1/n)

×
{(

1− 1

n

)[
ǫ2/3

cµ2γ

r3 − ǫ2

2r3
−an

(
1− ǫ2

r3

)√
2(r3+ǫ2)

µ

(√
r3+ǫ2√

2µ
∓1

)]

+

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

2 [
ǫ2/3

cr3γ
+ 2an

(
1 +

ǫ2

r3

)]
 . (C.21)
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Thus, from

C =
A

6an2
, (C.22)

we can write

X = ± A
n

√
2(r3 + ǫ2)

µ

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

−2(1−1/n)

×



1 − eaσ

2

|W0|
|A0|

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

−1/n

+B − 1

6

[(
1 − ǫ2

r3

)
± 2

√
2(r3 + ǫ2)

µ

ǫ2

r3

]

−1 − 1/n

6

[
ǫ2/3

ancµ2γ

r3 − ǫ2

2r3
−
(

1 − ǫ2

r3

) √
2(r3 + ǫ2)

µ

(√
r3 + ǫ2√

2µ
∓ 1

)]}
(C.23)

Y = − A
n

r3 + ǫ2

µ2

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

−2(1−1/n)

×



1 − eaσ

2

|W0|
|A0|

∣∣∣∣∣1 ∓
√
r3 + ǫ2√

2µ

∣∣∣∣∣

−1/n

+B − 1

6

[
ǫ2/3

ancr3γ
+ 2

(
1 +

ǫ2

r3

)]

−1 − 1/n

6

[
ǫ2/3

ancµ2γ

r3 − ǫ2

2r3
−
(

1 − ǫ2

r3

) √
2(r3 + ǫ2)

µ

(√
r3 + ǫ2√

2µ
∓ 1

)]}
. (C.24)

Note that we can write Y using X as

Y =∓
√
r3+ǫ2√

2µ
X+

A
6nµ2

(r3+ǫ2)

∣∣∣∣∣1∓
√
r3+ǫ2√

2µ

∣∣∣∣∣

−2(1−1/n){
1+

ǫ2/3

ancr3γ
+

[
3∓ 2

√
2(r3+ǫ2)

µ

]
ǫ2

r3

}
.

(C.25)

To estimate the stability near the tip, let us take the limit r3 → ǫ2, i.e. very close to

the end of the inflationary epoch. Then, from (C.23) and (C.24), we can see that

X →± 2A
n

ǫ

µ

∣∣∣∣1 ∓ ǫ

µ

∣∣∣∣
−2(1−1/n)

[
1 − eaσ

2

|W0|
|A0|

∣∣∣∣1 ∓ ǫ

µ

∣∣∣∣
−1/n

+
a

6
(2σ − γk0) ∓

2ǫ

3µ

]
, (C.26)

Y →− 2A
n

(
ǫ

µ

)2∣∣∣∣1∓
ε

µ

∣∣∣∣
−2(1−1/n)

[
1

3
− eaσ

2

|W0|
|A0|

∣∣∣∣1∓
ǫ

µ

∣∣∣∣
−1/n

+
a

6
(2σ−γk0)−

1

6ancǫ4/3γ

]

= ∓ ǫ

µ
X +

A
3n

(
ǫ

µ

)2 ∣∣∣∣1 ∓ ǫ

µ

∣∣∣∣
−2(1−1/n) [

4

(
1 ∓ ǫ

µ

)
+

1

ancǫ4/3γ

]
. (C.27)

Further, in this limit, all the eigenvalues in (C.15) become X + Y , so that for the angular

stability along α2, α3 and α4 we require that

X + Y =

(
1 ∓ ǫ

µ

)
X +

A
3n

(
ǫ

µ

)2 ∣∣∣∣1 ∓ ǫ

µ

∣∣∣∣
−2(1−1/n) [

4

(
1 ∓ ǫ

µ

)
+

1

ancǫ4/3γ

]
> 0 . (C.28)

To complete the analysis we therefore need extra information, e.g. the value of the stabilized

volume modulus at the tip σ0 and the ratio ǫ/µ. Since ǫ/µ is the ratio of the size of the
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tip ǫ to the distance of the stack of D7 branes to the tip µ, one can easily tune it such

that ǫ/µ < 1. Therefore it is sufficient to check the positivity of (C.26). For this, we apply

the results we establish in the following appendix (D.4) and (D.9) related to σ0: then the

terms in the square brackets of (C.26) can be written as

1 − eaσ

2

|W0|
|A0|

∣∣∣∣1 ∓ ǫ

µ

∣∣∣∣
−1/n

+
a

6
(2σ − γk0) ∓

2ǫ

3µ
≈ 1

2
− bs

6
∓ 2ǫ

3µ
≈ 1

2
− bs

6
. (C.29)

Thus the angular stability depends on the product bs: if bs > 3 we obtain negative sign

while bs < 3 it becomes positive. Since we know that the power b for our uplifting potential

is either 2 (for VD3D3) or 3 (for VD−term) and that 1 < s . O(3), the product bs lies in the

range

2 < bs . O(9) . (C.30)

We can therefore see that the condition for angular stability bs > 3 can be naturally sat-

isfied. Thus we conclude that z
(0)
1 = −

√
(r3 + ε2)/2 is the stable trajectory we have been

searching for very near the tip.

D. Derivation of approximated stabilized volume

Having derived the angular stable trajectory z1 = −
√

(r3 + ǫ2)/2, we are left with a two-

field potential VF (r, σ) = VKKLT(r, σ) + ∆VF (r, σ). In this appendix we will derive an

approximate expression of the stabilized volume σ⋆(r) in term of the radial coordinate r

that is given by (5.19).

D.1 Stabilized volume at the tip

Without taking into account of the uplifting term and the additional contribution from the

D3 brane position, we have the usual anti de Sitter minimum of KKLT compactification,

the stabilized volume modulus σF is defined to be

∂VF

∂σ
(r, σ)

∣∣∣∣
r=ǫ2/3,σ=σF

= 0 . (D.1)

Explicitly σF can be given by the transcendental equation

|W0|
|A0|

eaσF G1/n = 1 +
aUF

3
, (D.2)

where G is defined by (5.29) and

UF = 2σF − γk0 . (D.3)

Thus at the tip, the potential is given by

VF (r = ε2/3, σ = σF ) = VKKLT|r=ǫ2/3 = −a
2κ2|A0|2e−2aσF

3UF
G−2/n . (D.4)

Notice that ∆VF vanishes at r = ǫ2/3.
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Now consider including the effect of uplifting term VD(r, σ) which we assume to take

the form in (4.5). We expect such a term contributes a small shift to the stabilized volume

at the tip of the throat σ0 = σF + δσ, which is formally defined as

∂(VF + VD)

∂σ

∣∣∣∣
r=ε2/3,σ=σ0

≈ ∂2VF

∂σ2

∣∣∣∣
σF

δσ +
∂VD

∂σ

∣∣∣∣
σ0

= 0 , (D.5)

where

∂VD

∂σ

∣∣∣∣
σ0

= − 2bVD

2σ0 − γk0
≈ −bVD

σF

[
1 − (b+ 1)

(
δσ

σF
+
γk0

2σF

)]
. (D.6)

Solving (D.5) and (D.6), we obtain

δσ

σF
≈
[
1 − (b+ 1)

γk0

2σF

] [
(b+ 1) +

σ2
F

bVD

∂2VF

∂σ2

∣∣∣∣
σF

]−1

. (D.7)

We can also find that

∂2VF

∂σ2

∣∣∣∣
r=ε2/3,σ=σF

=
2aκ2|A0|2e−2aσF

U2
F

G−2/n

(
a3UF

3
+

5

3
a2 − 16a

3UF

)

≈2a2 a
2κ2|A0|2e−2aσF

3UF
G−2/n

=2a2|VF (r = ǫ2/3, σ = σF )| , (D.8)

where we have used the fact that typically σF ≫ 1. The shift of the stabilized volume can

then be approximated as

δσ ≈ bs

2a2σF
, (D.9)

where the parameter s is the uplifting ratio given by (4.9).

D.2 Radial dependence

Now let us also take into account the dependence of the stabilized volume on the brane

position, denoted as σ⋆(r). Formally this amounts to solving the equation

∂[VF (r, σ) + VD(r, σ)]

∂σ

∣∣∣∣
σ⋆(r)

= 0 . (D.10)

From (5.15), (5.16) and (4.5) and the previous analysis, the volume modulus σ appears in

both the exponential and the polynomial, (D.10) is thus in fact a transcendental equation.

To simplify the analysis, one notices that in the large σF /σ0 limit, one can approximate

σ⋆(r) in the polynomial by σ0 [13], as the difference is exponentially suppressed. Then we

are left with a quadratic equation of X ≡ exp(−aσ⋆) given by

A2X
2 +A1X −A0 = 0 , (D.11)

so that

σ⋆ =
1

a
log


2A2

A1

(
−1 −

√
1 +

4A0A2

A2
1

)−1

 . (D.12)
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Two comments are in order: first, we note that

A0 =
2bD(|y − ȳ|)

U b+1
σ0

∝ 1

σb+1
0

, (D.13)

with b = 2 or 3. Therefore, unless we care for corrections beyond O(1/σb+1
0 ), the factor

4A0A2/A
2
1 in the square root does not alter the leading contribution if there exist terms up

to O(1/σb
0), which is indeed the case as will be shown. Second, since we are interested in

the region very close to r = ǫ2/3, the primary expansion parameter will be r − ǫ2/3 which

we denote by x below. Thus we expect

2A2

A1

(
−1 −

√
1 +

4A0A2

A2
1

)−1

= − A2

A1
+ O

(
1

σb+1
0

)

=eaσF

{[
O(1) + O

(
1

σ0

)
+ · · · + O

(
1

σb
0

)]

+

[
O(1) + O

(
1

σ0

)
+ · · · + O

(
1

σb
0

)]
x+ · · ·

}
.

(D.14)

After some calculations, we can find that schematically

−A2

A1
= eaσF (c0 + c1x) , (D.15)

where the coefficients are given such that

c0 =1 + O
(

1

σ2
F

)
, (D.16)

c1 = ∓ 3ǫ1/3

4nµ

∣∣∣∣1 ± ǫ

µ

∣∣∣∣
−1

+ O
(

1

σF

)
, (D.17)

so that

σ⋆ ≈ σF

(
1 +

c1
aσF

x

)
. (D.18)

One notices that in contrast with ref. [13], where the leading radial dependence enters at

order r3/2, here with the deformation parameter ǫ 6= 0, we only have a rational expansion.

Furthermore as σF and σ0 only differs at order 1/σF , we can replace σF by σ0 in (D.18).

E. Calculations of the slow-roll parameter

In this section we present explicit calculation of the slow-roll parameter ε given in the main

text. From (2.8), (5.19), (5.20) and (A.28), the derivatives of σ⋆(r) and U [r, σ⋆(r)] with

respect to the radial coordinate r are given by

∂σ⋆(r)

∂r
=

3ǫ1/3

4anµ
G , (E.1)

∂U [r, σ⋆(r)]

∂r
=

3ǫ1/3

2anµ
G − 3cγ

ǫ2/3
r2 , (E.2)
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respectively, where G is again given by (5.29). Given these, now let us calculate the

derivatives of V with respect to r from (5.23), (5.24) and (5.25). For notational simplicity,

from below let us denote

g(r) ≡ 1 +

√
r3 + ǫ2√

2µ
. (E.3)

We can find, after some simple calculations, that the first derivatives with respect to r are

given by

∂VKKLT

∂r
=VKKLT

{
−3ǫ1/3

nµ
G
(

1

2
+

1

aU

)
+

6cγ

ǫ2/3U
r2 +

3r2

2nµ2[g(r) − 1]g(r)

}

+
2κ2a|A0|2e−2aσ⋆

U2
[g(r)]2/n

×
{
|W0|
|A0|

eaσ⋆ [g(r)]−1/n

[
−3ǫ1/3

4nµ
G+

3r2

4nµ2[g(r)−1]g(r)

]
+
a

2

[
ǫ1/3

2anµ
G+cγ

ǫ10/3

r4

]}
,

(E.4)

∂∆VF

∂r
=∆VF

{
−3ǫ1/3

nµ
G
(

1

2
+

1

aU

)
+

6cγ

ǫ2/3U
r2 +

(
1

n
− 1

)
3r2

2µ2[g(r) − 1]g(r)

}

+
κ2|A0|2e−2aσ⋆

n2U2
[g(r)]2(1/n−1)

×
{(

1 − ǫ2

r3

)
(an− 1)g(r) + 1

g(r) − 1

r2

2µ2
+
ǫ2

r4

[
ǫ2/3

2cµ2γ
− 2an[g(r) − 1]g(r)

]}
,

(E.5)

∂VD

∂r
=

1

U b

{
∂D(|y − ȳ|)

∂r
− bD(|y − ȳ|)

U

[
3ǫ1/3

2anµ
G − 3cγ

ǫ2/3
r2

]}
. (E.6)

As can be read from the above expressions, in general ε is a complex functions of r. To catch

a clearer feeling, it would be useful to evaluate them at the tip, i.e. at r = ǫ2/3. (E.4), (E.5)

and (E.6) then become

∂VKKLT

∂r

∣∣∣∣
r=ǫ2/3

= |VKKLT|r=ǫ2/3| 3

UF

[
3ǫ1/3

2anµ
G − cγǫ2/3

]
, (E.7)

∂∆VF

∂r

∣∣∣∣
r=ǫ2/3

= |VKKLT|r=ǫ2/3| 3

a2n2UF
G2

[
ǫ2/3

2cµ2γ
− 2an

ǫ

µ
G−1

]
ǫ−2/3 , (E.8)

∂VD

∂r

∣∣∣∣
r=ǫ2/3

=
1

U b
F

{
∂D

∂r

∣∣∣∣
r=ǫ2/3

− bD|r=ǫ2/3

UF

[
3ǫ1/3

2anµ
G − 3cγǫ2/3

]}
, (E.9)

where VKKLT|r=ǫ2/3 is given by (D.4) and UF by (D.3). Hence, we have

∂V

∂r

∣∣∣∣
r=ǫ2/3

=
3 |VKKLT|r=ǫ2/3|

UF

{[
3ǫ1/3

2anµ
G − cγǫ2/3

]
+

G2

a2n2ǫ2/3

[
ǫ2/3

2cµ2γ
− 2an

ǫ

µ
G−1

]}

+
1

U b
F

{
∂D

∂r

∣∣∣∣
r=ǫ2/3

− bD|r=ǫ2/3

UF

[
3ǫ1/3

2anµ
G − 3cγǫ2/3

]}
. (E.10)
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Further, from (4.9) we can relate VD|r=ǫ2/3 with VKKLT|r=ǫ2/3 by

VD|r=ǫ2/3 =
D|r=ǫ2/3

U b
F

= s|VKKLT|r=ǫ2/3| . (E.11)

This further simplifies (E.10) into

∂V

∂r

∣∣∣∣
r=ǫ2/3

=|VKKLT|r=ǫ2/3|
{

3 − sb

UF

[
3ǫ1/3

4πµ
G − cγǫ2/3

]
+

2sbcγ

UF
ǫ2/3 +

s

D

∂D

∂r

∣∣∣∣
r=ǫ2/3

+
3G2

4π2UF

[
ǫ2/3

2cµ2γ
− 4π

ǫ

µ
G−1

]
ǫ2/3

}
. (E.12)

Likewise, using the fact that ∆VF |r=ǫ2/3 = 0,

V|r=ǫ2/3 =VKKLT|r=ǫ2/3 + ∆VF |r=ǫ2/3 + VD|r=ǫ2/3

=VKKLT|r=ǫ2/3 + VD|r=ǫ2/3

=(s− 1)|VKKLT|r=ǫ2/3 | . (E.13)

Thus, at the tip we obtain

∂V/∂r

V

∣∣∣∣
r=ǫ2/3

=
1

s− 1

{
3 − sb

UF

[
3ǫ1/3

4πµ
G − cγǫ2/3

]
+

2sbcγ

UF
ǫ2/3 +

s

D

∂D

∂r

∣∣∣∣
r=ǫ2/3

+
3G2

4π2UF

[
ǫ2/3

2cµ2γ
− 4π

ǫ

µ
G−1

]
ǫ2/3

}
. (E.14)

Note that D contains the factor |y − ȳ| and that its derivative is given by

∂|y − ȳ|
∂r

= 2(r − ǫ2/3) , (E.15)

we can easily see that the term involving ∂D(|y − ȳ|)/∂r in fact vanishes at r = ǫ2/3

for VD3D3 with b = 2, whereas for VD−term with b = 3 such term vanishes identically as

D(|y − ȳ|) = vD. In other words, εend for the two different uplifting mechanisms only

differ in b. The canonically normalized inflaton near the tip is identified as in (2.31) and

∂φτ = (∂r/∂φτ )∂r. Note that ǫ and µ, γ, and r have mass dimension of –3/2, 2 and –1

respectively, so it can be easily seen that (∂V/∂r)/V has mass dimension 1 by counting

the dimensionful parameters.

Since (E.14) is clearly finite, from the chain rule (5.27) one can easily see that the

slow-roll parameter ε in fact vanishes identically at the tip r = ǫ2/3, or φτ = 0. However

we can expand around the tip and obtain the lowest order approximation as

ε(r) ≈ M2
Pl

3T3ǫ4/3

(
∂V/∂r

V

)2
∣∣∣∣∣
r=ǫ2/3

(
r2 − ǫ4/3

)
, (E.16)

with (∂V/∂r)/V|r=ǫ2/3 given by (E.14). We can express ε(r) in terms of the compactifica-

tion parameters describing the bulk and throat geometries [13]. Several useful expressions
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are

r̂UV

ǫ2/3
=

√
3

2

rUV

ǫ2/3
= exp

(
2πK

3gsM

)
≡ a−1

0 , (E.17)

Qµ ≡rUV

rµ
=

rUV

(2µ2)1/3
=

21/6

31/2a0

(
ǫ

µ

)2/3

, (E.18)

γ ≈B4

B6

2 logQµ

3πr2UV

=
B4

B6

2 logQµ

3π(2µ2)2/3Q2
µ

, (E.19)

M2
Pl =

T 2
3

π
V w

6 =
3

8
NB6T3(2µ

2)2/3Q2
µ , (E.20)

UF ≈2σF ≈ 3N

2π
B4 logQµ . (E.21)

Here r̂UV denotes the ultraviolet cutoff radius where the deformed conifold is attached to

the bulk Calabi-Yau, rµ is the minimal radius of D7, and B4 and B6 denote the contribu-

tions of the throat to the warped volume of the wrapped four cycle and to the total warped

volume of the compact space V w
6 , respectively. Substituting these into (E.14) and (E.16)

and after a little calculations, we find

∂V/∂r

V

∣∣∣∣
r=ǫ2/3

=
µ−2/3

s− 1

{
3 − sb

3NB4 logQµ

[
3

2
31/12

(
a0Qµ

c

)1/2
(

1 + 31/4

(
a0Qµ

c

)3/2
)

−B4

B6

2 · 21/3c logQµ

3Q2
µ

31/12

(
a0Qµ

c

)]
+

4 · 21/3sbc

9NB6Q2
µ

31/6

(
a0Qµ

c

)

+
2

NB4 logQµ

[
1 + 31/4

(
a0Qµ

c

)3/2
]−2

×
[
B6

B4

3Q2
µ

8 · 21/3c logQµ
−31/12

(
a0Qµ

c

)1/2
(
1+31/4

(
a0Qµ

c

)3/2
)]}

.

(E.22)

We can also observe from above that for the two different uplifting mechanisms, the value

of ε(r) only differ in b.
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